52 research outputs found

    Direct Current Electrical Stimulation Increases the Fusion Rate of Spinal Fusion Cages

    Get PDF
    Study Design. A randomized experimental evaluation of direct current stimulation in a validated animal model with an experimental control group, using blinded radiographic, biomechanical, histologic, and statistical measures. Objectives. To evaluate the efficacy of the adjunctive use of direct current stimulation on the fusion rate and speed of healing of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model. Summary of Background Data. Titanium lumbar interbody spinal fusion cages have been reported to be 90% effective for single-level lumbar interbody fusion. However, fusion rates are reported to be between 70% and 80% in patients with multilevel fusions or with risk factors such as obesity, tobacco use, or metabolic disorders. The authors hypothesized that direct current stimulation would increase the fusion rate of titanium interbody fusion cages packed with autograft in a sheep lumbar interbody fusion model. Methods. Twenty-two sheep underwent lumbar discectomy and fusion at L4–L5 with an 11- × 20-mm Bagby and Kuslich (BAK) cage packed with autograft. Seven sheep received a BAK cage and no current. Seven sheep had a cage and a 40-μA current applied with a direct current stimulator. Eight sheep had a BAK cage and a 100-μA current applied. All sheep were killed 4 months after surgery. The efficacy of electrical stimulation in promoting interbody fusion was assessed by performing radiographic, biomechanical, and histologic analyses in a blinded fashion. Results. The histologic fusion rate increased as the direct current dose increased from 0 μA to 40 μA to 100 μA (P \u3c 0.009). Histologically, all animals in the 100-μA group had fusions in both the right and left sides of the cage. Direct current stimulation had a significant effect on increasing the stiffness of the treated motion segment in right lateral bending (P \u3c 0.120), left lateral bending (P \u3c 0.017), right axial rotation (P \u3c 0.004), left axial rotation (P \u3c 0.073), extension (P \u3c 0.078), and flexion (P \u3c 0.029) over nonstimulated levels. Conclusion. Direct current stimulation increased the histologic and biomechanical fusion rate and the speed of healing of lumbar interbody spinal fusion cages in an ovine model at 4 months

    Polyetheretherketone as a Biomaterial for Spinal Applications

    Get PDF
    Threaded lumbar interbody spinal fusion devices (TIBFD) made from titanium have been reported to be 90% effective for single-level lumbar interbody fusion, although radiographic determination of fusion has been intensely debated in the literature. Using blinded radiographic, biomechanic, histologic, and statistical measures, we evaluated a radiolucent polyetheretherketone (PEEK)-threaded interbody fusion device packed with autograft or rhBMP-2 on an absorbable collagen sponge in 13 sheep at 6 months. Radiographic fusion, increased spinal level biomechanical stiffness, and histologic fusion were demonstrated for the PEEK cages filled with autograft or rhBMP-2 on a collagen sponge. No device degradation or wear debris was observed. Only mild chronic inflammation consisting of a few macrophages was observed in peri-implant tissues. Based on these results, the polymeric biomaterial PEEK may be a useful biomaterial for interbody fusion cages due to the polymer\u27s increased radiolucency and decreased stiffness

    Bioresorbable Polylactide Interbody Implants in an Ovine Anterior Cervical Discectomy and Fusion Model: Three-Year Results

    Get PDF
    Study Design. In vivo study of anterior discectomy and fusion using a bioresorbable 70:30 poly(l-lactide-co-d,l-lactide) interbody implant in an ovine model. Objective. To evaluate the efficacy of the polylactide implant to function as an interbody fusion device, and to assess the tissue reaction to the material during the resorption process. Summary of Background Data. The use of polylactide as a cervical interbody implant has several potential advantages when compared with traditional materials. Having an elastic modulus very similar to bone minimizes the potential for stress shielding, and as the material resorbs additional loading is transferred to the developing fusion mass. Although preclinical and clinical studies have demonstrated the suitability of polylactide implants for lumbar interbody fusion, detailed information on cervical anterior cervical discectomy and fusion (ACDF) with polylactide devices is desirable. Methods. Single level ACDF was performed in 8 skeletally mature ewes. Bioresorbable 70:30 poly (l-lactide-co-d,l-lactide) interbody implants packed with autograft were used with single-level metallic plates. Radiographs were made every 3 months up to 1 year, and yearly thereafter. The animals were killed at 6 months (3 animals), 12 months (3 animals), and 36 months (2 animals). In addition to the serial plain radiographs, the specimens were evaluated by nondestructive biomechanical testing and undecalcified histologic analysis. Results. The bioresorbable polylactide implants were effective in achieving interbody fusion. The 6-month animals appeared fused radiographically and biomechanically, whereas histologic sections demonstrated partial fusion (in 3 of 3 animals). Radiographic fusion was confirmed histologically and biomechanically at 12 months (3 of 3 animals) and 36 months (2 of 2 animals). A mild chronic inflammatory response to the resorbing polylactide implant was observed at both 6 months and 12 months. At 36 months, the operative levels were solidly fused and the implants were completely resorbed. No adverse tissue response was observed in any animal at any time period. Conclusion. Interbody fusion was achieved using bioresorbable polylactide implants, with no evidence of implant collapse, extrusion, or adverse tissue response to the material. The use of polylactide as a cervical interbody device appears both safe and effective based on these ACDF animal model results

    Transient Local Bone Remodeling Effects of rhBMP-2 in an Ovine Interbody Spine Fusion Model

    Get PDF
    Background: Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a powerful osteoinductive morphogen capable of stimulating the migration of mesenchymal stem cells (MSCs) to the site of implantation and inducing the proliferation and differentiation of these MSCs into osteoblasts. Vertebral end-plate and vertebral body resorption has been reported after interbody fusion with high doses of rhBMP-2. In this study, we investigated the effects of 2 rhBMP-2 doses on peri-implant bone resorption and bone remodeling at 7 time points in an end-plate-sparing ovine interbody fusion model. Methods: Twenty-one female sheep underwent an end-plate-sparing discectomy followed by interbody fusion at L2-L3 and L4-L5 using a custom polyetheretherketone (PEEK) interbody fusion device. The PEEK interbody device was filled with 1 of 2 different doses of rhBMP-2 on an absorbable collagen sponge (ACS): 0.13 mg (1·) or 0.90 mg (7·). Bone remodeling and interbody fusion were assessed via high-resolution radiography and histological analyses at 1, 2, 3, 4, 8, 12, and 20 weeks postoperatively. Results: Peri-implant bone resorption peaked between 3 and 8 weeks in both the 1· and the 7· rhBMP-2/ACS-dose group. Osteoclastic activity and corresponding peri-implant bone resorption was dose-dependent, with moderate-tomarked resorption at the 7·-dose level and less resorption at the 1·-dose level. Both dose (p \u3c 0.0007) and time (p \u3c 0.0025) affected bone resorption significantly. Transient bone-resorption areas were fully healed by 12 weeks. Osseous bridging was seen at all but 1 spinal level at 12 and at 20 weeks. Conclusions: In the ovine end-plate-sparing interbody fusion model, rhBMP-2 dose-dependent osteoclastic resorption is a transient phenomenon that peaks at 4 weeks postoperatively. Clinical Relevance: Using the U.S. Food and Drug Administration (FDA)-approved rhBMP-2 concentration and matching the volume of rhBMP-2/ACS with the volume of desired bone formation within the interbody construct may limit the occurrence of transient bone resorption

    Is lumbar facet fusion biomechanically equivalent to lumbar posterolateral onlay fusion?

    No full text
    OBJECTIVE This study was designed with the following research objectives: 1) to determine the efficacy of facet fusion with recombinant human bone morphogenetic protein–2 (rhBMP-2) on an absorbable collagen sponge (ACS) in an ovine lumbar facet fusion model; 2) to radiographically and histologically compare the efficacy of lumbar facet fusion with rhBMP-2/ACS to facet fusion with an iliac crest bone graft (ICBG); and 3) to biomechanically compare lumbar facet fusion with rhBMP-2/ACS to lumbar posterolateral fusion (PLF) with ICBG. METHODS The efficacies of the 3 treatments to induce fusion were evaluated in an instrumented ovine lumbar fusion model. Eight sheep had 10 cm3/side ICBG placed as an onlay graft for PLF at L2–3. At the adjacent L3–4 level, 0.5 cm3/side ICBG was placed for facet fusion. Finally, 0.5 cm3/side rhBMP-2/ACS (0.43 mg/ml) was placed for facet fusion at L4–5. CT scans were obtained at 2, 4, and 6 months postoperatively with 2 reviewers conducting an evaluation of the 6-month results for all treated spinal levels. All 8 sheep were killed at 6 months, and all posterolateral instrumentation was removed at this time. The spines were then sectioned through L3–4 to allow for nondestructive unconstrained biomechanical testing of the L2–3 and L4–5 segments. All treated spinal levels were analyzed using undecalcified histology with corresponding microradiography. Statistical comparisons were made between the treatment groups. RESULTS The PLF with ICBG (ICBG PLF group) and the rhBMP-2 facet fusion (rhBMP-2 Facet group) treatment groups demonstrated similar levels of stiffness, with the rhBMP-2 Facet group having on average slightly higher stiffness in all 6 loading directions. All 8 levels in the autograft facet fusion treatment group demonstrated CT radiographic and histological fusion. All 8 levels in the rhBMP-2 Facet group showed bilateral CT radiographic and histological fusion. Six of 16 rhBMP-2/ACS-treated facet defects demonstrated small intraosseous hematomas or seromas. Four of the 8 levels (50%) in the ICBG PLF treatment group demonstrated bilateral histological fusion. Three of 8 levels in the ICBG PLF treatment group showed unilateral fusion. One of the 8 levels in the ICBG PLF treatment group demonstrated bilateral histological nonfusion. CONCLUSIONS Both rhBMP-2/ACS and autograft demonstrated 100% efficacy when used for facet fusion in the instrumented ovine model. However, the ICBG PLF treatment group only demonstrated a 50% bilateral fusion rate. Biomechanically, the ICBG PLF and rhBMP-2 Facet groups demonstrated similar stiffness in all 6 loading directions, with the rhBMP-2 Facet group having on average slightly higher stiffness in all directions
    • …
    corecore